¹⁵N and ¹³³Cs Solid NMR Studies on Ionic Dynamics in Plastic CsNO₂*

H. Honda^a, M. Kenmotsu^a, N. Onoda-Yamamuro^a, H. Ohki^a, S. Ishimaru^a, R. Ikeda, and Y. Furukawa^b

Z. Naturforsch. 51a, 761-768 (1996); received October 24, 1995

The temperature dependence of the 15 N and 133 Cs NMR spin-lattice relaxation times, the 15 N spin-spin relaxation time, and the 15 N and 133 Cs spectra of CsNO₂ was observed in the plastic phase (209.2 < T < 673 K (m. p.)) and the low-temperature phase (Phase II). In Phase II we found the NO₂⁻ 180°-flip, which could be attributed to the anomalous increase of the heat capacity curve, and determined the activation energy of this motion to be 8.7-11.7 kJ mol⁻¹. The 15 N and 133 Cs spectra in this phase are inconsistent with the reported crystal structure R 3 m and can be explained by lower crystal symmetry. In the plastic phase we detected a new anionic motion with 11 kJ mol⁻¹, an isotropic NO₂⁻ reorientation with 8.5-9 kJ mol⁻¹, and ionic self-diffusion with 47 kJ mol⁻¹. The presence of ionic self-diffusion was confirmed by measuring the electrical conductivity.

Key words: ¹⁵N and ¹³³Cs Solid NMR, Plastic crystal, Phase transition, Chemical shift anisotropy, Electric field gradient.

1. Introduction

The nitrites MNO₂ (M = K, Rb, Cs, Tl) are ionic crystals showing plastic phases [1 - 8]. The dynamic properties of potassium [9], rubidium [10], and thallium [11] nitrite in the plastic phase, such as molecular diffusion and isotropic reorientation, are quite analogous to those in molecular plastic phases [12]. The onset of isotropic reorientation of the NO_2^- ions in the plastic phase enables the highly symmetric NaCl or CsCl type cubic structure. At the transition from the low-temperature phase of these nitrites, the heat capacity exhibits an anomalous long tail on the low-temperature side extending over 100 K [2 - 4, 6 - 8]. This anomaly implies that the disorder in structure takes place far below the transition point.

Two solid phases in $CsNO_2$ have been reported [1 - 5]. The plastic phase (Phase I) obtainable between 209.2 and 673 K (melting point) forms a CsCl-type cubic lattice with space group $Pm\overline{3}m$ and

Reprint requests to Prof. R. Ikeda, Fax: 81-298-53-6503.

 a_0 = 438.9 pm [1]. Raman [3, 4] and neutron powder diffraction [13] studies have revealed the presence of the two kinds of NO₂⁻ reorientation motions in Phase I. The transition entropy from Phase II to I amounts to 17.3 J K⁻¹ mol⁻¹ and is almost the same as the melting entropy (17.79 J K⁻¹ mol⁻¹) [2 - 5]. Phase II has a rhombohedral lattice with R3m and a_0 = 430.7 pm, α = 87.22° [1]. The dielectric constant in this phase [3, 4] shows a marked dispersion attributable to some anionic motion with an activation energy of 13.8 kJ mol⁻¹. The freezing of this motion is expected to occur at the glass transition at \approx 40 K [3, 4].

In the present study we have studied temperature dependences of the ¹⁵N and ¹³³Cs NMR spectra and relaxation times to get information about the NO₂ motional modes in Phase II and the plastic phase.

2. Experimental

CsNO₂ and Cs¹⁵NO₂ were prepared from NaNO₂ (Wako Pure Chemical Industries Ltd.) and Na¹⁵NO₂ (99 wt% ¹⁵N, ICON Inc.), respectively, using a cation exchange resin (Diaion SK-1, Mitsubishi Kasei Corp.). A small amount of ¹⁵NO₃ ions involved in the Cs¹⁵NO₂ eluent was removed by an anion exchange resin (Dowex 1-X8, The Dow Chemical Company).

0932-0784 / 96 / 0500-0761 $\$ 06.00 $\$ – Verlag der Zeitschrift für Naturforschung, D-72072 Tübingen

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

^a Department of Chemistry, University of Tsukuba, Tsukuba 305, Japan

^b Faculty of School Education, Hiroshima University, Higashi-Hiroshima 739, Japan

^{*} Presented at the XIIIth International Symposium on Nuclear Quadrupole Interactions, Providence, Rhode Island, USA, July 23-28, 1995.

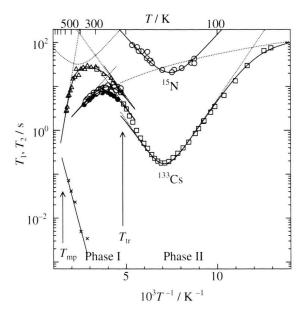


Fig. 1. Temperature dependences of 15 N NMR spin-lattice relaxation time T_1 at the Larmor frequencies of 30.42 (o) and 40.56 MHz (\bullet), and spin-spin relaxation time T_2 (×) at 40.56 MHz in Cs 15 NO₂, and 133 Cs T_1 at 7.60 (\triangle) and 35.58 MHz (\square) in Cs 14 NO₂. Solid and dotted lines are the best fitted theoretical values. $T_{\rm tr}$ and $T_{\rm mp}$ are the phase transition and melting temperatures, respectively.

Recrystallization of the obtained crude crystals from water gave hygroscopic pale yellow crystals.

¹⁵N (I=1/2) NMR spectra and spin-lattice relaxation time T_1 were measured at the Larmor frequencies 30.42 MHz (7.041 T) and 40.56 MHz (9.388 T) using a Bruker MSL-300 spectrometer at 120-360 K, and a Bruker MSL-400 spectrometer at 220-360 K, respectively. The spin-spin relaxation time T_2 was observed at 300-650 K. The saturation recovery and Carr-Purcell methods were employed for evaluating T_1 and T_2 , respectively. The ¹⁵N chemical shift was determined using an external reference of ¹⁵NH₄⁺ (δ₈ = -354 ppm) in a 4.5 M solution of ¹⁵NH₄NO₃ in 3 M hydrochloric acid.

The 133 Cs (I = 7/2) NMR T_1 in Cs 14 NO $_2$ was measured at 35.58 MHz by a homemade spectrometer equipped with an Oxford superconducting magnet (6.37 T) in the range 77-296 K, at 7.6 MHz using a Varian V-7300 electromagnet in the range 213-587 K, and at 52.48 MHz by use of a Bruker MSL-400 in the range 217-384 K; the inversion and saturation recovery methods were employed. We could determine a single value of 133 Cs T_1 in the whole temperature

range because almost an exponential decay of the magnetization after the 90° pulse was observed. The 133 Cs NMR spectrum was obtained from a FID after one 90° pulse at 39.36 MHz using a Bruker MSL-300 spectrometer in the range 130-340 K.

X-ray powder diffraction patterns were recorded at 110 and 298 K by a Philips X'Pert PW 3040/00 diffractometer with a Cu anticathode.

The electrical conductivity was measured at 1 kHz by the two-terminal method using a Yokogawa Hewlett-Packard 4261A LCR meter at 300-620 K. The powdered sample was pressed into a disc, 1 cm in diameter and *ca.* 1 mm thick, and graphite electrodes (Acheson Electrodag 199) were employed.

3. Results and discussion

3.1. Phase II (Low-Temperature Phase)

Temperature dependences of 15 N T_1 and T_2 in Cs^{15} NO₂ together with 133 Cs T_1 in Cs^{14} NO₂ in Phase I and II are shown in Figure 1. A shallow 15 N T_1 minimum of ca. 20 s and a deep 133 Cs T_1 minimum of ca. 200 ms were observed in Phase II.

 $^{133}C\,s$ NMR Relaxation Time and Spectra in $C\,s^{\,14}NO_{\,2}$

The deep 133 Cs T_1 minimum at 140 K is explainable by a quadrupolar mechanism caused by the EFG (electric field gradient) fluctuation at the Cs nuclei due to some anionic motion. A mechanism due to the averaging of magnetic dipole interactions of Cs–Cs and/or Cs–N nuclei can not explain the observed short T_1 minimum. The shallow 15 N T_1 minimum at nearly the same temperature is attributable to the same motion giving the 133 Cs T_1 minimum.

The asymmetric 133 Cs T_1 curve observed in phase II can be expressed by

$$\frac{1}{T_1} = \frac{1}{T_{1\text{Mot}}} + \frac{1}{T_{1\text{Lat}}},\tag{1}$$

where $T_{1\text{Mot}}$ is due to the NO_2^- motion and $T_{1\text{Lat}}$ to lattice vibrations at low temperatures. Assuming a Debye-type density spectrum for the relaxation of quadrupole nuclei with non-integer spins, we have [14]

$$\frac{1}{T_{1\text{Mot}}} = C \frac{\tau}{1 + \omega_{Cs}^2 \tau^2},\tag{2}$$

Phase	Motional Mode	$E_{\rm a}$ / kJ ${ m mol}^{-1}$	$ au_0$ / s	Observation
II	180°-Flip	8.7±2 11.7±2	$2.2 \times 10^{-12} \\ 2.2 \times 10^{-13}$	
I	C ₂ -Reorientation	11±2 11*		133 Cs T_1 15 N T_1
	Isotropic Reorientation	9.0±2 9.0±2	1.6×10^{-9}	15 N T_1 133 Cs T_1
	Self-Diffusion	47±2 33±3		133 Cs T_1 15 N T_2

Table 1. Motional modes, activation energies (E_a) and the pre-exponential factors (τ_0) for NO_2^- ions derived from spin-lattice and spin-spin relaxation times (T_1, T_2) of ^{15}N in $Cs^{15}NO_2$ and ^{133}Cs T_1 in $Cs^{14}NO_2$.

* The same value evaluated from 133 Cs T_1 data was assumed.

while the contribution from lattice vibrations is given by [14]

$$\frac{1}{T_{\text{1Lat}}} = AT^2. \tag{3}$$

Here, C, τ , and $\omega_{\rm Cs}$ are a constant depending on the motional mode, the correlation time of the motion, and the ¹³³Cs angular Larmor frequency, respectively. We assume an Arrhenius-type temperature dependence of τ :

$$\tau = \tau_0 \exp \frac{E_a}{RT}.$$
 (4)

We fitted the (1) - (4) to the observed 133 Cs T_1 data and showed the obtained best-fitted T_1 curve in Figure 1.

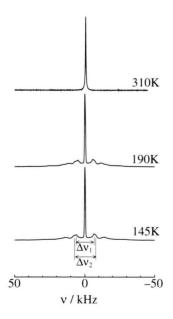


Fig. 2. 133 Cs NMR spectra observed at 39.36 MHz in Phase I and Phase II of Cs 14 NO₂. $\Delta\nu_1$ and $\Delta\nu_2$ are linewidths of the first satellite.

Small deviations from the experimental data seen in the high-temperature range of the T_1 minimum can be attributed to the influence of the phase transition. The evaluated activation parameters are listed in Table 1.

The temperature dependence of the recorded ^{133}Cs NMR spectra is shown in Figure 2. The observed line-shapes exhibit typical patterns with non-zero values of the quadrupole coupling constant (e^2Qq) and the asymmetry parameter (η) . ^{133}Cs e^2Qq/h and η values were evaluated from the observed widths $\Delta\nu_1$ and $\Delta\nu_2$ given by [15]

$$\Delta\nu_{1} = \frac{1}{14} \frac{e^{2}Qq}{h} (1 - \eta),$$

$$\Delta\nu_{2} = \frac{1}{14} \frac{e^{2}Qq}{h} (1 + \eta).$$
(5)

Temperature dependences of the determined e^2Qq/h and η are shown in Figure 3.

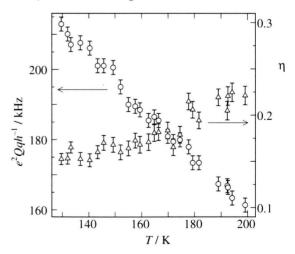


Fig. 3. Temperature dependences of e^2Qqh^{-1} (o) and η (\triangle) of ¹³³Cs in Phase II of Cs¹⁴NO₂.

 ^{15}N NMR Relaxation Time and Spectra in Cs ^{15}N O $_2$

The relaxation mechanism for the 15 N T_1 minimum in $\mathrm{Cs^{15}NO_2}$ observed in Phase II is attributable to the fluctuation of the chemical shift(CS) anisotropy at the 15 N nuclei. The observed T_1 value can be expressed as [14]

$$\frac{1}{T_1} \simeq \frac{3}{10} \Delta \omega^2 \frac{\tau}{1 + \omega_N^2 \tau^2},\tag{6}$$

where τ , $\omega_{\rm N}$, and $\Delta\omega$ denote the correlation time of the expected anionic motion, the $^{15}{\rm N}$ Larmor angular frequency, and the line-width narrowed by the CS averaging, respectively. Equations (4) and (6) were fitted to the observed $^{15}{\rm N}$ $T_{\rm I}$ values, and the obtained best-fitted $T_{\rm I}$ curve is shown in Figure 1. The evaluated activation parameters are given in Table 1.

Figure 4 shows the temperature dependence of 15 N NMR spectra observed in Phase I and II. All spectra of Phase II gave three principal CS components. This indicates that a motion giving no change of NO_2^- symmetry takes place in the above motional process.

A marked anomaly of the dielectric dispersion has been reported in the temperature and frequency ranges 58-130 K and 10²-10⁵ Hz, respectively, in Phase II [3, 4]. This indicates that the anionic motion in this phase is accompanied by a change of the electric-dipole

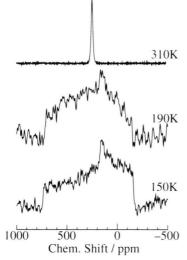


Fig. 4. 15 N NMR spectra observed at 30.56 MHz in Phase I and Phase II of Cs¹⁵NO₂. The external reference of chemical shift is 15 NH₄⁺ ($\delta_s = -354$ ppm) in a 4.5 M solution of 15 NH₄NO₃ in 3 M hydrochloric acid.

direction of the NO_2^- ions. The activation energy E_a of 13.8 kJ mol⁻¹ and the correlation time τ_0 of the order of 10^{-14} derived in the dielectric study at low-temperatures are close to the present NMR results in Table 1. These results suggest that the same motion is observed by these two different techniques.

By combining the results of the ^{15}N NMR line-shape and dielectric dispersion, we attribute this motion to a 180° -flip of the NO_{2}^{-} ion, in which its dipole flips about one of the two axes perpendicular to the molecular C_{2} -axis. This model can keep the ^{15}N three principal CS components unchanged through this motional process. The onset of this motion in Phase II is consistent with the orientational disorder of NO_{2}^{-} ions expected from thermal studies [3, 4]. Since the 180° -flip slows down at low temperatures, we can accept the proposed model of the freezing of NO_{2}^{-} orientation at the glass transition observed at ca. 40 K [3, 4].

It has been reported from the X-ray measurement that Phase II forms a rhombohedral lattice with the space group $R\overline{3}m$ and Z=1 [1]. If this structure is applied, Cs nuclei are on the site of 1a or 1b, then spectra with $\eta=0$ should be obtained. Moreover, in this structure ¹⁵N NMR spectra with an axially symmetric CS tensor should be observed as reported in the rhombohedral phase of KNO₂ [9]. Since these expectations contradict with the present observations, we reinvestigated powder X-ray diffraction in this phase.

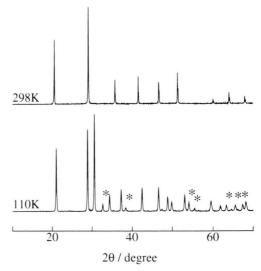


Fig. 5. X-ray powder diffraction patterns observed at 298 K in Phase I and at 110 K in Phase II of CsNO₂. Diffraction lines with asterisk are inexplainable by the reported rhombohedral lattice [1].

X-ray powder patterns observed at 298 K (Phase I) and 110 K (Phase II) are shown in Figure 5. The diffraction lines observed at 298 K were consistent with the reported data [1], whereas the pattern at 110 K gave seven extra peaks in a 2θ range of $10\text{-}70^\circ$, as shown in Fig. 5, which could not be indexed on the basis of the reported rhombohedral lattice [1]. Since these peaks were reproduced on repeated runs and undetectable in Phase I, they are characteristic of Phase II. The observed diffraction lines are explainable by a monoclinic system with Z > 2. This possibility does conform with the present results of 15 N and 133 Cs NMR spectra described above.

We measured the temperature dependence of the principal values of the 15 N CS tensor in Cs 15 NO₂ and showed it in Figure 6. The calculation of the 15 N CS tensor in Na 15 NO₂ [16, 17] afforded that the direction of the largest component δ_{33} is perpendicular to the molecular plane, the intermediate δ_{22} along the C₂-axis, and the smallest δ_{11} in the molecular plane. We can see that the absolute values of δ_{11} and δ_{33} gradually decrease upon heating in the high-temperature region, while δ_{22} changes little. This result suggests that there is an increase of the amplitude of NO₂ libration about the C₂-axis upon heating or the onset of a new reorientation by a small angle about the axis. A similar motion has already been found

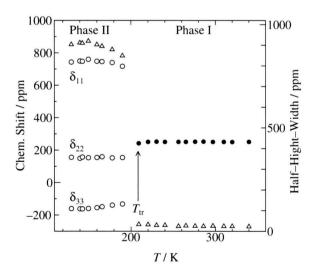


Fig. 6. Temperature dependences of three principal values $(\delta_{11}, \delta_{22}, \delta_{33})$ (\circ) of the chemical shift tensor of ¹⁵N observed in Phase II, isotropic-shift values in Phase I (\bullet) and half-height-widths (\triangle) of the observed spectra in Cs¹⁵NO₂. $T_{\rm tr}$ denotes the phase transition temperature.

in the low-temperature phase of $Rb^{15}NO_2$ [10] and $Tl^{15}NO_2$ [11].

3.2. Phase I (Plastic Phase)

Phase I, which forms a CsCl-type cubic lattice [1, 12], contains isotropically disordered NO₂ dipoles as predicted from structural and thermal studies [3, 4]. A T_1 maximum of 15 N and 133 Cs was observed around 250 and 350 K, respectively, as shown in Figure 1. We obtained a narrowed single ¹³³Cs and ¹⁵N NMR spectrum at 340 K with a half-height width of ca. 300 Hz and ca. 730 Hz, respectively, as shown in Figs. 2 and 4, in the same order. The observed sharp ¹³³Cs spectrum with no satellite indicates spherically symmetric EFG at the Cs nuclei. The ¹⁵N spectrum is quite analogous to those in K¹⁵NO₂, Rb¹⁵NO₂ and Tl¹⁵NO₂ observed in the respective plastic phases. These results indicate the onset of isotropic reorientation of the NO₂ ions in the plastic phases. The ¹⁵N CS value of 252 ppm being independent of temperature is very close to 248, 249, and 239 ppm observed in potassium [9], rubidium [10], and thallium [11] salts, respectively.

133Cs Relaxation Time in CsNO₂

The 133 Cs T_1 data observed in Phase I were inexplainable by contributions of two motional modes. We tentatively expressed the observed T_1 by the three relaxation times given by

$$\frac{1}{T_1} = \frac{1}{T_{1a}} + \frac{1}{T_{1b}} + \frac{1}{T_{1c}} \tag{7}$$

Here, T_{1a} contributes in the low-temperature range below 280 K, while T_{1c} at high temperatures above 450 K, and T_{1b} in the intermediate range. We assumed that these T_1 values can be written by (2) and (7) in which $\omega \tau \ll 1$ is assumed for T_{1a} and $\omega \tau \gg 1$ for T_{1c} . Applying (2),(4) and (7), we determined the best fitted T_1 curve shown in Fig. 1 and listed the obtained activation parameters in Table 1. We may assign T_{1a} to the NO_2^- reorientation about the C_2 -axis which is expected to take place in Phase II as derived from the analysis of the CS anisotropy. This motion in Phase I seems to have a larger amplitude than in Phase II, and probably the 180° -flip of the NO_2^- ion is acceptable. The second component T_{1b} is attributable to the anionic isotropic reorientation which has been shown

from the 15 N spectrum analysis. The determined activation energy of 9 ± 2 kJ mol $^{-1}$ for this motion agrees well with 9.0 kJ mol $^{-1}$ evaluated from 15 N T_1 in Cs 15 NO $_2$, as discussed below. The third component T_{1c} can be assigned to the ionic self-diffusion. This assignment is supported by the analysis of 15 N T_2 and the temperature dependence of electrical conductivity given below.

¹⁵N Relaxation Time in Cs ¹⁵NO₂

Temperature dependences of 15 N T_1 and T_2 observed in Phase I are shown in Figure 1. The observed 15 N T_2 values increased with temperature and became longer than 10 ms above 400 K. These T_2 values can be explained by the onset of ionic self-diffusion from the following calculation: We estimated the T_2 value from the magnetic dipolar linewidth ΔH of 15 N in a powder sample of Phase I, where isotropically rotating anions are assumed, using the relation [14]

$$\frac{1}{T_2} = \frac{\gamma_{\rm N}}{2\pi} \sqrt{\langle \Delta H \rangle^2},\tag{8}$$

$$\langle \Delta H \rangle^2 = \frac{3}{5} \hbar^2 \gamma_{\rm N}^2 I_{\rm N} (I_{\rm N} + 1) \sum \frac{1}{r_{ij}^6} + \frac{4}{15} \hbar^2 \gamma_{\rm Cs}^2 I_{\rm Cs} (I_{\rm Cs} + 1) \sum \frac{1}{r_{ik}^6},$$
 (9)

where γ_N , γ_{Cs} , I_N , and I_{Cs} denote the gyromagnetic ratios and spin quantum numbers of ¹⁵N and ¹³³Cs nuclei, respectively. r_{ij} and r_{ik} are ¹⁵N-¹⁵N and ¹⁵N-¹³³Cs inter-nuclear distances, respectively. The first and second terms in (9) are contributions from ¹⁵N-¹⁵N and ¹⁵N-¹³³Cs magnetic dipolar interactions, respectively. Assuming the isotropically reorienting NO_2^- ions without self-diffusion, we evaluated a T_2 value of 5.5 ms from (8) and (9). The model of the NO₂ isotropic reorientation and Cs⁺ self-diffusion gives a calculated T_2 value of 33 ms. Since the T_2 > 10 ms observed above 400 K is much longer 5.5 ms for the model of isotropically rotating NO₂ ions, this T_2 increase with temperature is attributed to the averaging of the interionic magnetic dipolar interactions due to the cationic self-diffusion. From the slope of the T_2 temperature dependence, we obtained an activation energy of 33 ± 3 kJ mol⁻¹ for the cationic self-diffusion.

A T_1 maximum was observed around 250 K at 30.42 MHz. We expressed the observed T_1 by

$$\frac{1}{T_{\rm l}} = \frac{1}{T_{\rm la}} + \frac{1}{T_{\rm lb}} \tag{10}$$

Here T_{1a} contributes in the low-temperature range below the T_1 maximum, while T_{1b} in the high-temperature range. We assumed that these T_1 values can be written by (4) and (10), in which $\omega\tau\ll 1$ is assumed for T_{1a} and $\omega\tau\gg 1$ for T_{1b} . Using (4), (6) and (10), we evaluated the best fitted T_1 curve as shown in Fig. 1 and determined the activation parameters given in Table 1. We assigned T_{1b} to the isotropic reorientation of NO_2^- ions as expected from the ^{15}N spectra analysis given above. It is noted that the activation energy of 9.0 kJ mol $^{-1}$ for the isotropic reorientation is comparable to 10 and 12 kJ mol $^{-1}$ reported for the same motion in KNO $_2$ [9], 6.2 kJ mol $^{-1}$ in RbNO $_2$ [10], and 13.5 kJ mol $^{-1}$ in TlNO $_2$ [11].

The motional mode contributing to $T_{\rm la}$ is, accordingly, attributed to a new NO $_2^-$ motion with an amplitude smaller than that of the isotropic reorientation. We may assign this model to the NO $_2^-$ reorientation about its C $_2$ -axis. The same motion gives the decrease in the 133 Cs T_1 in the same temperature range as discussed above.

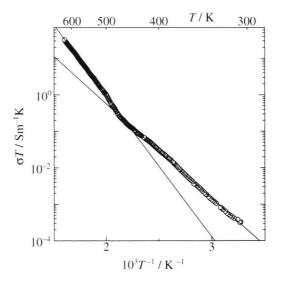


Fig. 7. Temperature dependence of the electrical conductivity σ observed at 1 kHz in Phase I of CsNO₂. The solid lines show the superimposed two conduction processes with activation energies of 50 ± 5 and 74 ± 5 kJ mol⁻¹.

Electrical Conductivity (σ)

We measured the electrical conductivity (σ) to confirm the presence of ionic self-diffusion. The temperature dependence of σT is shown in Figure 7. Upon heating, a rapid increase of σ to the order of 10^{-2} S m⁻¹ was observed around 600 K. This clearly implies the presence of ionic conduction in conformity with the present NMR analysis.

Since the value of σT is proportional to the diffusion constant, if we apply the Nernst-Einstein relation, the diffusional activation energy can be derived from the slope of $\log \sigma T$ plotted against T^{-1} . We analyzed the data shown in Fig. 7, by assuming the presence of two conducting processes, which gave activation energies of 50 ± 5 and 74 ± 5 kJ mol⁻¹. The lower value agrees well with 47 kJ mol⁻¹ obtained from the present NMR data analysis. The other value seems to stem from the barrier for anionic self-diffusion.

4. Conclusion

The anomalous increase of the heat capacity observed over a wide temperature range below the phase transition at 209.2 K in CsNO₂ was shown to be explained by the excitation of 180°-flip of NO₂⁻ ions in Phase II. This motion was determined from the temperature dependences of the ¹⁵N NMR spectra, which retained the three kinds of different CS components in the whole temperature range of Phase II. The presence of this motion is supported by the reported data of the dielectric dispersion and relaxation [3, 4]. The ¹⁵N and ¹³³Cs lineshapes indicating the absence of the C₃ site symmetry at the respective ions conflict with the reported structure R3m [1]. The X-ray diffraction

patterns observed in this phase allowed us to attribute the structure of this phase to a monoclinic system, although the space group is unknown. This structure is consistent with the ¹⁵N and ¹³³Cs NMR spectra observed in the present study.

In the plastic phase (Phase I) having a CsCl-type cubic lattice, the anionic isotropic reorientation and a new motion attributable to the NO₂ reorientation about its C₂-axis, were derived from ¹⁵N and ¹³³Cs NMR T_1 . The activation energy of 9.0 kJ mol⁻¹ determined for the isotropic reorientation are close to 13.5 kJ mol⁻¹ obtained in TlNO₂ [11] having a CsCl-type cubic structure, and 10 and 12 kJ mol⁻¹ in KNO₂ [9], and 6.2 and 8.5 kJ mol⁻¹ in RbNO₂ [10], both forming the NaCl-type cubic lattice. On the other hand, the obtained activation energy of 47 kJ mol⁻¹ for cationic self-diffusion derived from T_1 became the same as that in TINO₂ [18, 19], whereas it is much smaller than 110 kJ mol⁻¹ in RbNO₂ [10]. This difference in the diffusional barriers can be attributed to the difference in the diffusional process in which ions can directly jump to the nearest vacant site in the CsCl-type lattice, whereas two successive jumps over a high barrier are needed in the NaCl-type lattice [20 - 22].

Acknowledgement

We are grateful to Dr. Y. Onoda and Dr. M. Tansho in National Institute for Research in Inorganic Materials for the use of the MSL-400 spectrometer. This work was partly supported by a Grant-in-aid for Scientific Research No. 06453055 from the Ministry of Education, Science and Culture, Japan.

- [1] P. W. Richter and C. W. F. T. Pistorius, J. Solid State Chem. **5**, 276 (1972).
- [2] S. C. Mraw, R. J. Boak, and L. A. K. Staveley, J. Chem. Thermodyn. 8, 1001 (1976).
- [3] K. Moriya, T. Matsuo, and H. Suga, Chem. Phys. Lett. 82, 581 (1981).
- [4] K. Moriya, T. Matsuo, and H. Suga, J. Phys. Chem. Solids, 44, 1103 (1983).
- [5] K. Moriya, T. Matsuo, and H. Suga, Thermochim. Acta, 132, 133 (1988).
- [6] S. C. Mraw, R. J. Boak, and L. A. K. Staveley, J. Chem. Thermodyn. 10, 359 (1978).

- [7] K. Moriya, T. Matsuo, and H. Suga, Bull. Chem. Soc. Japan 61, 1911 (1988).
- [8] K. Moriya, T. Matsuo, H. Suga, and S. Seki, Chem. Lett. 1427 (1977).
- [9] M. Kenmotsu, H. Honda, H. Ohki, R. Ikeda, T. Erata, A. Tasaki, and Y. Furukawa, Z. Naturforsch. 49a, 247 (1994).
- [10] H. Honda, M. Kenmotsu, H. Ohki, R. Ikeda, and Y. Furukawa, Ber. Bunsenges. Phys. Chem. 99, 1009 (1995).
- [11] H. Honda, S. Ishimaru, N. O-Yamamuro, and R. Ikeda, Z. Naturforsch. 50a, 871 (1995).

- [12] J. N. Sherwood, The Plastically Crystalline State, John Wiley & Sons, Chichester 1979.
- [13] D. Hohlwein, A. Hoser, and W. Prandl, Z. Kristallogr. 177, 93 (1986).
- [14] A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London 1961.
- [15] M. H. Cohen and R. Reif, Solid State Phys. 5, 321 (1957).
- [16] R. E. Wasylishen, R. D. Curitis, K. Eichele, M. D. Lumsden, G. H. Penner, W. P. Power, and G. Wu, NATO ASI Ser. Ser. C, 386, 297 (1993).
- [17] J. Mason, NATO ASI Ser. Ser. C 386, 449 (1993).
- [18] Y. Furukawa and H. Kiriyama, Chem. Phys. Lett. 93, 617 (1982).
- [19] Y. Furukawa, H. Nagase, R. Ikeda, and D. Nakamura, Bull. Chem. Soc. Japan. 64, 3105 (1991).
- [20] M. Tansho, Y. Furukawa, D. Nakamura, and R. Ikeda, Ber. Bunsenges. Phys. Chem. 96, 550 (1992).
- [21] N. E. Byer and H. S. Sack, Phys. Rev. Lett. 17, 72 (1966).
- [22] R. J. Quigley and T. P. Das, Solid State Commun. 5, 487 (1967).